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          real world data very often consist of true signal 
and random noise. Although it’s ideal to fit only the 
true signal using a perfect statistical model to explore 
the underlying relationship between the outcome 
y=f(x)+ε and the independent variables (predictors) x, 
many times the true signal f(x) and the random noise ε 
cannot be separated from each other. In other words, 
we can only observe y and x, and would not be able to 
observe f(x), where f() is the function that defines the 
underlying relationship between y and x. 

        Let’s recall the process of data collection - in 
reality, it is rarely feasible to evaluate the underlying 
relationships using data of an entire population. The 
common approach is to take random samples from 
the population, and then using the sample data to in-
fer such relationships. However, due to the random 
nature of sampling, as well as the random noise in-
herited in individual observations, it is common that 
statistical models fitted using different random sam-
ples (collected from the same population) will have dif-

I have collected some demographic, clinic, and blood test data from colon cancer patients treated from 2010 to 2012. 
I am interested in factors that potentially affect serum CRP levels shortly after diagnosis. I am thinking to use all the 

data (variables) in a regression model to evaluate such relationships. Is model over-fitting a concern?    

ferent parameters. Moreover, in situations where ε is 
substantial, and the number of independent variables 
is large, a statistical model might mainly describe the 
random noise rather than the underlying relationship; 
this effect is called over-fitting. For example, if one 
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fits n data points to n parameters, the fit will be exact, 
but it will be unlikely to work well with another sample 
of n  points from the same population. The opposite 
problem – under-fitting – occurs when too few param-
eters are used. A model that is under-fitted will work 
well only if the parameter left out is homogeneously 
distributed throughout the population. 

       The classical example of model over-fitting is to fit 
data with a polynomial regression. Suppose that the 
true underlying relationship between x and y in a pop-
ulation is y=30+x2 (this is rarely known in reality; we 
assume that it is known for demonstration purposes).  
First, we randomly sample 9 observations from the 
population (panel A), and fit the data with both a sec-
ond order polynomial (red curve; the “correct” model), 
and a 10th order polynomial (blue curve: the “over-fit-
ted” model). As we can see, although the 10th order 
polynomial has a perfect fit to the data, it substantially 
deviates from the true relationship (black curve). As 
a comparison, although the second order polynomial 
does not fit the data perfectly, it agrees well with the 
true relationship. Next, we take another independent 
random sample of 9 observations from the same pop-
ulation (panel B). It can be seen that the second order 
polynomial developed on the first sample has an ac-
ceptable fit also to the second independent sample. 
On contrast, the 10th order polynomial has a very poor 
fit. In other words, the 10th order polynomial model 
fits not only the underlying relationship, but also the 
variation associated with random error, thus it is a 
over-fitted model. Therefore, it is not surprising that 
such a model fits well to one sample, but poorly to 
another one.
    
        Since the goal of any biomedical/clinical study is 
to disclose the true underlying relationship, it is critical 
to find the “correct” model in data analysis.

     To find the “correct” model and avoid model 
over-fitting, many methods have been proposed. The 
majority of them adopt one of the following strategies: 
1) penalize models with more parameters - since in-
creased number of parameters in a model is associ-
ated with higher probability of modeling the random 

error,  penalizing extra parameters reduces the risk of 
over-fitting; 2) use validation data set(s) to evaluate 
the performance of the fitted model - since the true 
underlying relationship is supposed to be consistent 
(the random noise is not) across samples randomly 
collected from the same population, models that con-
sistently have good performance on different samples 
are more likely to be the one that models the true un-
derlying relationship rather than the random noise.

      1. Penalize models with more parameters

        Penalizing additional parameters (predictors) can 
be achieved by either performing the traditional mod-
el selection (based on different criteria) or applying 
penalized regression models. 

      (A) Traditional model selection

     i. Selection based on: Adjusted R-squared, Mal-
lows’ Cp, AIC and BIC

     R-squared is the percentage of outcome variable 
variation explained by the model, and describes how 
close the data are to the fitted regression. In general, 
the higher the R-squared value, the better the model 
fits. However, R-squared always increases with addi-
tional predictors, thus models with more extra predic-
tors always have higher R-squared values. The ad-
justed R-squared adjusts the R-squared value for the 
number of predictors, and it increases only if the addi-
tional predictor improves the model more than would 
be expected by chance. Thus, models with higher 
adjusted R-squared are generally considered better.

    Mallows’ Cp estimates the mean squared prediction 
error, and is a compromise among factors, including 
sample size, collinearity, and predictor effect sizes. 
The adequate models are those with Cp less than or 
equal to the number of parameters (including the con-
stant) in the model.

     AIC is “Akaike’s Information Criterion”, and BIC is 
“Schwartz’ Bayesian Criterion.” Both aim at achiev-
ing a compromise between model goodness of fit and 
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model complexity. The only difference between AIC 
and BIC is the penalty term, where BIC is more strin-
gent than AIC. The preferred models are those with 
minimum AIC/BIC.

    ii. Best subset / forward / backward / step-wise 
selection 

    Assuming that the total number of predictors is p, 
then the best subset selection fits 2p total models, and 
chooses the best model based on criteria, such as, 
adjusted R-squared, Mallows’ Cp, AIC/BIC. However, 
if the total number of predictors is large, for example, 
greater than 30, then the computation can be a big 
issue.

     In forward selection, the most significant variable 
(based on certain pre-set confidence level) is added 
to the model one at a time, until no additional variable 
meets the criterion.

     Backward selection starts with the full model that 
includes all the variables of interest, and then drop 
non-significant variables one at a time, until all the 
variables left are significant. 

     Step-wise selection allows both adding and drop-
ping variables to allow dropped variables to be recon-
sidered. 

     As an alternative to the above traditional model se-
lection methods, penalized regressions achieve coef-
ficient estimation and model selection simultaneously.

      (B) Penalized regressions (LASSO regression and 
Elastic Net)

    The LASSO (Least Absolute Shrinkage and Selec-
tion Operator) achieves model selection by penaliz-
ing the absolute size of the regression coefficients. 
In other words, LASSO includes a penalty term that 
constrains the size of the estimated coefficients. As 
a result, solutions of the lasso regression will have 
many coefficients set exactly to zero, and the larger 
the penalty applied, the more estimates are shrunk 

towards zero. In general, the penalty parameter is 
chosen by cross validation to maximize out-of-sam-
ple fit.

     Elastic Net regression was developed to overcome 
the limitations of LASSO, and in general outperforms 
LASSO when the predictors are highly correlated.

     2. Cross validation

     Any random sample will differ from its population. 
From a given population, two independent samples 
share the true underlying relationship, but not the 
sample-specific variation. It is important to assess 
how well the model developed on one sample per-
forms on another independent sample, and fine tune 
model parameters. Cross validation is an easy-to-im-
plement tool to make such assessments.    

     (A) k-fold cross validation

     The k-fold cross validation is one of the most com-
monly used methods. Basically, the sample is ran-
domly partitioned into k equal size subsets, then one 
of the k subsets is used as the validation set, and all 
the other k-1 subsets are used as the training set. 
This process is repeated k times (folds), so that each 
of the k subsets is used exactly once as the valida-
tion set. Results from the k validations can then be 
averaged to produce a single estimation. As a special 
case, if k equals N, which is the total number of obser-
vations, then the k-fold cross validation is called the 
leave-one-out cross validation.

     (B) random sub-sampling validation

    In k-fold cross validation, the proportion of the 
training/validation subsets depends on the number of 
iterations (folds). In situations where the total num-
ber of sample observations is small, it would make 
sense to use random sub-sampling validation, such 
as bootstrap. Note that the disadvantages of random 
sub-sampling   are   that  some   observations  might 
never have been sampled, and the results might vary 
if such randomization is repeated. 
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Some other concerns:

    Although over-fitting is a real issue in statistical 
modeling, model under-fitting can also have serious 
consequences. For example, a family history of can-
cer is a strong risk factor associated with breast can-
cer. Suppose that if in a breast cancer study, data on 
the family history were not collected, it is very likely 
that models developed using such data produce bi-
ased coefficient estimates due to complex relation-
ships among predictors. Therefore, in any biomedical/
clinical studies, investigators are expected to have a 
comprehensive understanding of the research topic, 
so that the study design does not have any funda-
mental flaw. In fact, statistical modeling would make 
sense only after all biomedical/clinical considerations 
are well addressed. 

    On the other hand, although model over-fitting 
should be avoided, sometimes it would be clinically 
sound to keep a predictor in the model even it does not 
have a “statistically significant” effect. In other words, 
if there is strong clinical or biomedical evidence that 
a factor is strongly associated with the outcome of 
interest, we should always include that factor in the 
model so that its effect can be adjusted. 

     Other times, costs of data collection might be a 
factor to be considered for determining whether or not 
to include a predictor into a prediction model. In sit-
uations where it is costly to measure a predictor, an 
easy-to-measure alternative should be considered, 
and even compromises may have to be made on the 
performance of such an alternative(s).
 
     Overall, model selection is a critical step in data 
analysis. Considerations from both the clinical/bio-
medical and statistical aspects need to be well bal-
anced to develop a meaningful model.
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