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          Case-control studies are widely used in in-
vestigating the potential relationship of a suspected 
risk factor and a disease or outcome of interest. By 
looking retrospectively and comparing how frequently 
the exposure to a risk factor is present in subjects 
who have that disease (case) with those who do not 
have that disease (control), the relationship can be 
evaluated. The outcome variable can only take ex-
actly two values, conventionally labeled as “case” 
and “control”.  In fact, this type of variable is called a 
categorical/nominal variable1 (data that have two or 
more categories, but there is no intrinsic ordering to 
the categories). 

	 Since a categorical outcome variable can take 
only a few (two in case-control studies) possible val-
ues, its distribution can be very different from normal. 
Thus many of the statistical methods developed for 
analyzing data with normally-distributed outcome 
variables are not suitable for analyzing data with cat-
egorical outcomes. Note that those methods are also 
not suitable for analyzing data with ordinal (a statisti-
cal data type consisting of numerical scores that exist 
on a rank scale) or cardinal (a type of data in which 
observations can take only the non-negative integer 
values {0, 1, 2, 3, ...}, and where these integers arise 
from counting rather than ranking) outcome variables.
Binary logistic regression (we will drop “binary” for 
simplification purpose) is widely used in case-control 

study data analyses. In this column, we will provide 
some details on the application, assumption, interpre-
tation, and pitfalls of logistic regression.

1.The basics of logistic regression

    In the previous article, we showed how linear re-
gression “fits” data point pairs of a continuous depen-
dent variable x and a continuous variable y to the lin-
ear function  y=mx+b.  Our case-control study cannot 
use this method, because our outcome variable y can 
take only values of ‘case’ or ‘control’. Logistic regres-
sion solves this problem by transforming a non-linear 
equation into a linear form. 

     The first step is the use of the logistic function:

    The variable t can take any value from -∞ to +∞. 
The variable t will be ‘fit’ using regression methods 
to a linear function of our explanatory variable x. The 
explanatory variable in our example would be BMI. 
The linear model is:
       

                     t = β0+β1 x

 The logistic function becomes: 

             g(x) = log                    = t = β0+β1 x

         The physical meaning of β0 is the ‘intercept’ or 
log-odds of being a ‘case’ when the explanatory vari-
able has a value of 0, if 0 is achievable. The physical 
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meaning of β1 is the parameter which defines the rate 
of change in the log-odds  with changes in the expla-
natory variable (BMI). 

       In order to estimate the regression coefficients, 
numeric methods, such as the Newton-Raphson iter-
ation, are usually used because it is not possible to 
find a closed-form expression for the coefficient val-
ues. The Newton-Raphson iteration takes the form:

 x1   x0           (x0 )  
 	         / (x0 )

       where x1 is the new estimate, x0 is the previ-
ous estimate, f (x0 ) is the value of the function for 
the previous estimate, and   /(x0 ) is the value of the 
first derivative for the previous estimate.   The Newton 
method is well suited to automated computing pro-
vided the function is differentiable and the estimates 
converge to a single defined value.

2.  Application  of   logistic  regression  in   case-
control studies.

      In the example of a lung cancer study, the objec-
tive is to assess whether lung cancer is significantly 
associated with BMI. The two possible outcomes are: 
developed lung cancer and no lung cancer, respec-
tively; and we want to evaluate the effect of BMI on 
lung cancer, while controlling for smoking and other 
risk factors.

       A variety of software can be used for performing 
logistic regression analysis, such as SAS, Stata, 
SPSS, S-Plus/R, and Minitab. Since SAS is one of 
the most widely used software in statistics, below we 
provide the SAS code example for analyzing the lung 
cancer study data. 

proc logistic descending;
class smoking;
model disease = BMI smoking <other risk 
factors>;
run;

     The proc logistic procedure is used for modeling the 
probability of developing lung cancer. The outcome 
variable Disease is a categorical variable, coded as 
“1” for subjects who developed cancer and “0” for 
those who did not. While BMI is treated as a continu-
ous variable (we can later treat BMI as a categorical 
variable as well to see how it is associated with lung 
cancer), the class statement tells SAS that smoking is 
a categorical variable. The option descending is used 
by default to be consistent with how the outcome vari-
able is coded.

3. Assumptions of logistic regression.

    There are several assumptions underlying a logistic 
regression model. Since some of them are quite tech-
nical, we will skip them and focus only on the follow-
ing three that are particularly relevant to a case-con-
trol study.

    (a) No important variables are omitted.

      Not including known risk factor(s) in a logistic 
regression model creates estimation bias, because 
compensating for the missing risk factor(s) results in 
over- or underestimating the effect of other risk fac-
tors. Therefore, it is important for researchers to make 
sure that all known potential risk factor/confounder 
data are collected. For example, in the lung cancer 
study, while our objective is to investigate the associ-
ation between lung cancer and BMI, we still need to 
simultaneously collect data on smoking, family history 
of cancer, exposure to pollution, and any other known 
confounding variables.

    (b) The observations are independent.

            When this assumption is violated, the estimated 
standard errors are incorrect, as are the inferences. 
To avoid this violation, the study design and sampling 
plan have to be developed properly.

    (c)  No severe collinearity among independent vari-
ables is present.

x1   x0=
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        Collinearity occurs when two or more predictor 
variables in a multiple regression model are highly 
correlated. For example, gestational age and birth 
weight are highly correlated, i.e., low (high) gestational 
age is usually associated with low (high) birth weight. 
Including both variables in a logistic regression mod-
el will cause collinearity. Severe collinearity inflates 
the standard errors for the coefficients, which causes 
the estimated coefficients to be unreliable. Therefore, 
considerations need to be taken in the study planning 
stage to avoid causing collinearity problems.

4. Interpretation of logistic regression.

      By definition, the odds of an event (disease) is the 
ratio of the probability that an event will occur to the 
probability that the event will not occur. In the lung 
cancer study, suppose that we have the following 
data:

                     Developed lung cancer	  No lung cancer
Smoker	            nsc		             nsn
Non-smoker	            nnc		             nnn

     The odds of developing lung cancer for smokers 
is nsc   ⁄ nsn , and for non-smokers is nnc  ⁄ nnn . The odds 
ratio (OR) is the ratio of these two, thus,

     OR     nsc   / nsn        nsc nnn

              nnc  / nnn     nsn nnc

       Numerically, suppose nsc=400, nnc=100, nsn=300, 
and nnn= 700, then OR=(400×700)/(300×100) = 9.33.

        In the above example, there is only one risk factor 
(smoking), and the odds ratio calculated is called raw 
odds ratio. Logistic regression analysis can handle 
models with multiple risk factors, and provide odds 
ratio estimates for each risk factor while adjusting for 
all other risk factors (called adjusted odds ratio). Now 
suppose that the adjusted odds ratio for smoking is 
8.55 (with P value less than a pre-specified signifi-
cance level); then we can interpret it as: The odds of 
lung cancer is 8.55 times as high for smokers than for 
non-smokers given other risk factors equal.

=

5. Pitfalls in interpretation of logistic regression.

     As one of the major limitations of an observa-
tional study, a logistic regression can be used only 
for detecting association, rather than causation. For 
example, supposing we found a significant associ-
ation between lung cancer and smoking, we cannot 
conclude that smoking causes lung cancer because 
there are alternative explanations - “The same thing 
that causes people to smoke may predispose them to 
lung cancer3.” Therefore, further studies have to be 
conducted to verify that a causal effect does exist.

       Another issue associated with logistic regression 
is the interpretation of odds ratio. Clinicians think in 
probabilities, not odds. Although odds ratios are val-
id measurements of strength of an association, many 
times they are not good indications of relative risk 
(RR; the ratio of the probability of an event occurring 
in an exposed group to the probability of the event 
occurring in a non-exposed group). In fact, odds ratio 
can be used as a proxy for relative risk only when 
the assumption of “rare” event is met2.  For a “rare” 
event, the probabilities of an event for both the ex-
posed and non-exposed groups are very small, i.e., 
we have both P(event│exposure) ≈ 0 and P(event | 
non-exposure) ≈ 0. Therefore,

  OR         P (event|exposure) ⁄ [1-P (event|exposure) ]      
           P(event|non-exposure) ⁄ [1-P (event|non-exposure)]

           ≈     P (event|exposure)            
               P (event|non-exposure) 

    Sample size calculation is critical to the success 
of a case-control study. In general, sample size in-
creases with smaller effects and smaller pre-defined 
Type I and Type II errors. We will discuss sample size 
calculation issues in future articles.
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